

WISE-2011

Swell and wind-driven seas in VOS data

S. I. Badulin, V. G. Grigorieva

VOS – When and Where

Simple theory for VOS data

VOS data vs H - T slopes

Summary

References

ON DISCRIMINATING SWELL AND WIND-DRIVEN SEAS IN VOLUNTARY OBSERVING SHIP DATA

Sergei I. Badulin^{1,2}, V. G. Grigorieva¹

¹ P.P.Shirshov Institute of Oceanology of Russian Academy of Sciences ²Novosibirsk State University, Russia

23 May, 2011, Quindao

QUANTITY MAKES QUALITY !

Swell and wind-driven seas in VOS data

S. I. Badulin, V. G. Grigorieva

VOS – When and Where

Simple theory for VOS data

VOS data vs H - T slopes

Summary

References

Victoria Grigorieva (vika@sail.msk.ru) P.P.SHIRSHOV INSTITUTE OF OCEANOLOGY Sea Atmosphere Interaction And Climate Laboratory

Outline

Swell and wind-driven seas in VOS data

S. I. Badulin, V. G. Grigorieva

VOS – When and Where

Simple theory for VOS data

VOS data vs H - T slopes

Summary

Voluntary Observed Data – When and Where

Simple theory of self-similar wind seas for VOS data

3 VOS data vs H - T slopes

4 Summary

You are welcome to copy this presentation badulin@ioran.ru

ICOADS – International Comprehensive Ocean-Atmosphere Data Set

Swell and wind-driven seas in VOS data

S. I. Badulin, V. G. Grigorieva

VOS – When and Where

Simple theory for VOS data

VOS data vs H - T slopes

Summary

- Spans the past three centuries;
- Contains observations from many different observing systems encompassing the evolution of measurement technology over hundreds of years;
- ICOADS is probably the most complete and heterogeneous collection of surface marine data in existence (http://icoads.noaa.gov)

VOS – Voluntary Observed Ship

Swell and wind-driven seas in VOS data

S. I. Badulin, V. G. Grigorieva

VOS – When and Where

Simple theory for VOS data

VOS data vs H - T slopes

Summary

References

Definition

Voluntary Observing Ship – wave estimates taken visually by marine officers over many years - assimilated in ICOADS

Measured parameters

wind sea height, swell height, wind sea period, swell period, wind sea direction, swell direction, wind direction, wind speed, SLP, SST *et cet.* >30 parameters

The coding precisions are

0.5 m for heights,
1 sec for periods,
10° for directions

Visual wave observations: 1870 - onwards

Swell and wind-driven seas in VOS data

S. I. Badulin, V. G. Grigorieva

VOS – When and Where

Simple theory for VOS data

VOS data vs H - T slopes

Summary

References

Two streams of data: (1870-1949) and (1950-2007) > 2.000.000.000 telegrams

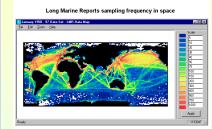
Cutty Sark (1869)	Noname (today)

Observational practice has never been changed Coding systems have been changed several times

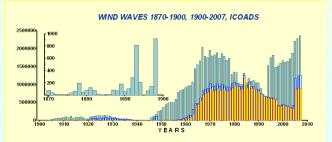
VOS wave data: since 1950 WW sea and swell are filed separately

Swell and wind-driven seas in VOS data	Max=16 m only max(sea,swell)	Max=25 m sea, swell, SWH
6. I. Badulin, V. G. Grigorieva	1900 1920 1940 YE	1960 1980 2000 A R S
OS – When nd Where imple heavy for OS data VS data vs / – T slopes ummary leferences	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	More Alle Affeld a first france with a second secon

Spatial and temporal data distributions


Swell and wind-driven seas in VOS data

S. I. Badulin, V. G. Grigorieva

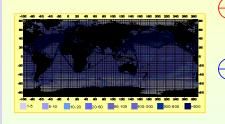

VOS – When and Where

Simple theory for VOS data

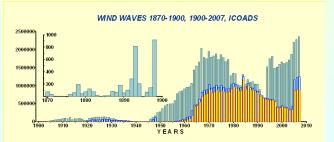
- VOS data vs H T slopes
- Summary

- increase in the total number during the last decade
- no the actual increase of reports containing all wave parameters (yellow)
- 1970-1990 the best sampled period

Spatial and temporal distributions: swings and roundabouts


S. I. Badulin, V. G. Grigorieva

VOS – When and Where


Simple theory for VOS data

- VOS data vs H T slopes
- Summary

References

 the longest records, separate estimates of wind sea and swell
 inhomogeneous in space and in time sampling, "human factor" – subjectivity

Data control and preprocessing of VOS wave data

Swell and wind-driven seas in VOS data

S. I. Badulin, V. G. Grigorieva

VOS – When and Where

Simple theory for VOS data

VOS data vs H - T slopes

Summary

- Presence of all wave-related variables 80% of total number of reports eliminated;
- Observational artifacts
 - unrealistic reporting date;
 - $\bullet\,$ reported zero periods for nonzero heights \approx 3 % out
- Computation of significant wave height;
- Sea and swell separation up to 10% of all reports out;
- Correction of small waves and periods ≈ 5 %
- Steepness control (unrealistic steepness)
 - Wind sea steepness $\mu > 0.2 \approx 30 \%$!!! problem of "1 s" period
 - Swell steepness $\mu > 0.15 \approx 10$ %
- Wave age control for wind waves a = C_p/V_{ef} a > 1.2 up to 3 % of all data are eliminated

Global Wind Wave Climatology from VOS data http://www.sail.msk.ru/atlas

5.0

4.0

3.0

2.5

2.0

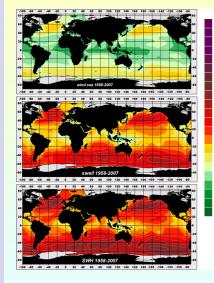
1.5

1.0

0.5

Swell and wind-driven seas in VOS data

S. I. Badulin, V. G. Grigorieva


VOS – When and Where

Simple theory for VOS data

VOS data vs H - T slopes

Summary

References

http://www.sail.msk.ru/atlas

- monthly 1958-2007 (updated);
- 2-degree resolution;
- separate estimates of sea, swell, SWH;
- raw and processed data upon your request;
- observational errors;
- day-night biases;
- sampling errors;
- fair weather bias

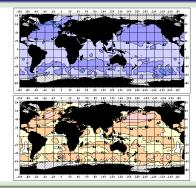
Computation of significant wave height

Swell and wind-driven seas in VOS data

S. I. Badulin, V. G. Grigorieva

VOS – When and Where

Simple theory for VOS data

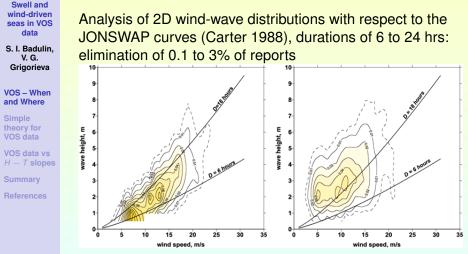

VOS data vs H - T slopes

Summary

References

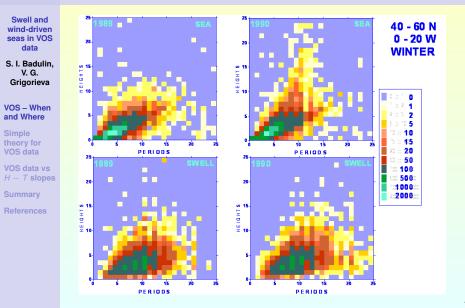
$$SWH = \begin{cases} (h_w^2 + h_s^2)^{1/2}, & \Delta\Theta_{ws} \le 30^\circ \\ \max(h_w, h_s), & \Delta\Theta_{ws} > 30^\circ \end{cases}$$
(1)

SWH for mixed seas



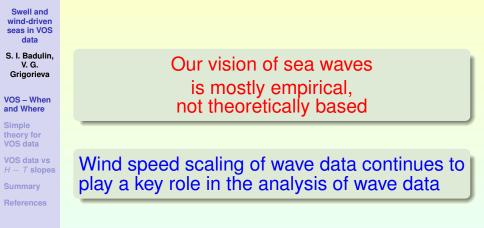
UP Our estimate minus (1) Negative < 0.3 m

DN Our estimate minus (2) Positive < 0.2 - 0.45 m


Wind sea and swell discriminating

Wind speed scaling is quite questionable

Sea and swell discriminating in VOS data



VOS wave data - where we are?

VOS wave data - where we are?

Simple theory of self-similar seas for VOS data

Swell and wind-driven seas in VOS data

S. I. Badulin, V. G. Grigorieva

VOS – When and Where

Simple theory for VOS data

VOS data vs H - T slopes

Summary

References

NB

- Nonlinear transfer (nonlinear relaxation) is a governing mechanism of sea wave evolution (is not a hypothesis yet, cf. Zakharov & Badulin at this conference);
- Dominating nonlinearity determines a strong tendency to self-similarity of wave spectra;
- Energy balance of sea waves is determined by total external forcing (energy flux) in spirit of Kolmogorov's theory of strong hydrodynamical turbulence

Wind speed is not a perfect scale of wind wave growth

Conventional power-law fits and families of self-similar solutions of the KE

Swell and wind-driven seas in VOS data

Fol

(19)

Dep

nor

Ĩ

or

Ĩ

FO

S. I. Badulin, V. G. Grigorieva

VOS – When and Where

Simple theory for VOS data

VOS data vs H - T slopes

lowing Kitaigorodsky 62)	Following weakly turbulent scaling by Badulin, Babanin,
pendencies on	Zakharov & Resio, 2007
n-dimensional fetch	Fetch-limited growth $10\sigma - 1$
$\chi = xg/U_h^2$	$p_{\chi} = \frac{10 q_{\chi}}{2}$
$= E_0 \chi^{p_{\chi}}; \qquad \tilde{\omega}_{\rho} = \omega_0 \chi^{-q_{\chi}}$	$p_{\chi} = \frac{10q_{\chi} - 1}{2}$ Duration-limited growth $9q_{\tau} - 1$
non-dimensional duration $ au = tg/U_h$	$p_{ au} = rac{9q_{ au} - 1}{2}$ Energy-to-flux
$= E_0 \tau^{p_\tau}; \qquad \tilde{\omega}_p = \omega_0 \tau^{-q_\tau}$	$\frac{E\omega_{p}^{4}}{g^{2}} = \alpha_{ss} \left(\frac{\omega_{p}^{3} \mathrm{d}E/\mathrm{d}t}{g^{2}}\right)^{1/3}$
UR FREE PARAMETERS!!! IS IT OUR FORTUNE?	TWO FREE PARAMETERS ONLY (p and E_0 or ω_0) !!!

Simple theory in simple relationships ABC and D of wind-wave growth (WISE-2010)

Swell and wind-driven seas in VOS data

S. I. Badulin, V. G. Grigorieva

VOS – When and Where

Simple theory for VOS data

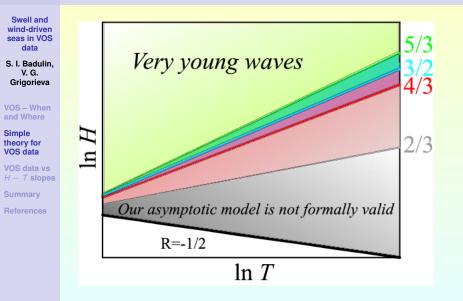
VOS data vs H - T slopes

Summary

References

One parametric dependencies $H_s(T_s)$ (wave height to wave period) provides information on spatio-temporal rates of wave growth, i.e.

One-parametric dependencies is a key tool of our approach


$$H \sim T^R$$
, $R = \frac{p}{2q} = \frac{9p}{4p+2}$

An alphabet of evolution of wind-wave spectra

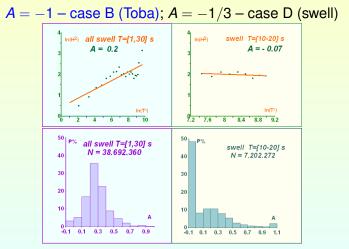
- A R=5/3 Hasselmann et al., 1976 young waves
- B R=3/2 Toba, 1972 growing waves
- C R=4/3 Zakharov, Zaslavskii, 1983 pre-saturated waves
- D R=-1/2 swell, e.g. Badulin et al. 2005

ABC and now D on H - T plots

H - T dependencies for swell. All data Long swell is consistent with *D* case !

Swell and wind-driven seas in VOS data

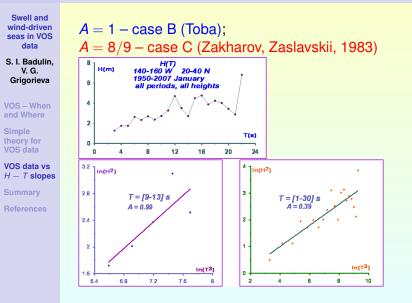
S. I. Badulin, V. G. Grigorieva


VOS – When and Where

Simple theory for VOS data

VOS data vs H - T slopes

Summary

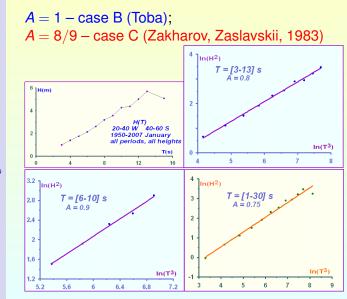

References

The last graph – swell never decays (!?) - A > -1/3

H - T dependencies for wind waves East Pacifica (not too short, not too long)

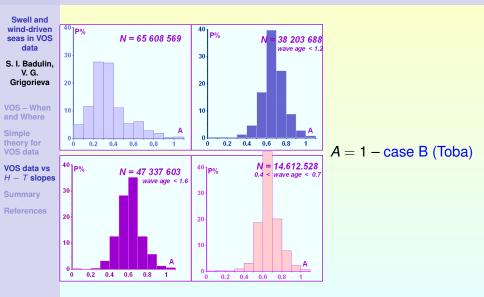
H - T dependencies for wind waves South Atlantica (not too short, not too long)

Swell and wind-driven seas in VOS data S. I. Badulin.

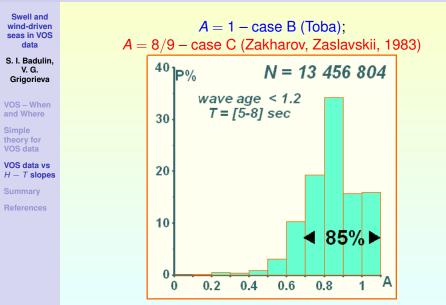

S. I. Badulin, V. G. Grigorieva

VOS – When and Where

Simple theory for VOS data


VOS data vs H - T slopes

Summary



Distribution of H - T slopes Wave age control. All data

Distribution of H - T slopes. All data Double control – Wave age + Periods

Summary

Swell and wind-driven seas in VOS data

S. I. Badulin, V. G. Grigorieva

VOS – When and Where

Simple theory for VOS data

VOS data vs H - T slopes

Summary

- VOS data is a valuable but very special source of information on wind-driven seas;
- VOS data can be related to "weakly turbulent vision" of wind-wave spectra evolution, especially, in discriminating wind and swell seas;
- Wave scale (frequency) control emphasizes dramatically the basic scenarios of the evolution (say, T = 6 ÷ 13 sec for wind sea and 10 < T < 30 sec for swell), the effect of wave age is less critical;
- Wind speed does not affect essentially our results due to features of its sampling

Swell and wind-driven seas in VOS data

S. I. Badulin, V. G. Grigorieva

VOS – When and Where

Simple theory for VOS data

VOS data vs H - T slopes

Summary

References

References

S. K. Gulev, V. G. Grigorieva, A. Sterl, D. Woolf Assessment for the reliability of wave observations from voluntary observing ships: insights from the validation of a global wind wave climatology based on voluntary observing ship data. J. Geophys. Res, 2003

Gulev, S.K. and V. Grigorieva *Last century changes in ocean wind wave height from global visual wave data*. Geophys. Res. Lett , 2004

E. Gagnaire-Renou, M. Benoit and S. I. Badulin, On weakly turbulent scaling of wind sea in simulations of fetch-limited growth, Journ.FI.Mech., 669 (2011), 178-213.

Swell and wind-driven seas in VOS data

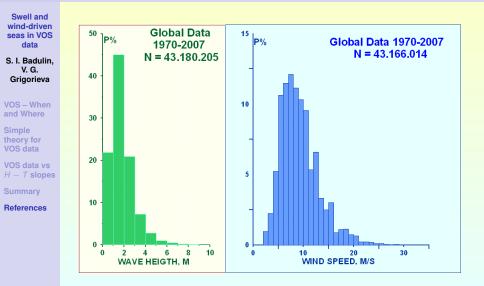
S. I. Badulin, V. G. Grigorieva

VOS – When and Where

Simple theory for VOS data

VOS data vs H - T slopes

Summary

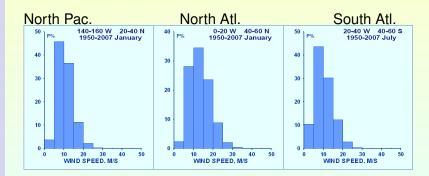

References

S. I. Badulin, A. V. Babanin, D. Resio, and V. Zakharov, Weakly turbulent laws of wind-wave growth, J. Fluid Mech. 591 (2007), 339–378.

S. I. Badulin, A. N. Pushkarev, D. Resio, and V. E. Zakharov, *Self-similarity of wind-driven seas*, Nonl. Proc. Geophys. **12** (2005), 891–946.

Slides for possible discussion Global wind-wave statistics

Slides for possible discussion Regional wind-wave statistics


S. I. Badulin, V. G. Grigorieva

VOS – When and Where

Simple theory for VOS data

VOS data vs H - T slopes

Summary

